．
 \＃．䍜
 ＂
 巽
 ：
 解解解

Specialist
 Mathematies

2006

Trial Examination 2

SECTION 1 Multiple-choice questions

Instructions for Section 1

Answer all questions.
Choose the response that is correct for the question.
A correct answer scores 1 , an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.
Unless otherwise indicated, the diagrams in this exam are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$.

Question 1

The graph of $y=\frac{2 x^{2}+x-3}{x^{2}+7 x-8}$ has
A. no straight line asymptotes.
B. only one straight line asymptote.
C. only two straight line asymptotes.
D. only three straight line asymptotes.
E. $x=1$ and $x=-8$ as its vertical asymptotes.

Question 2

Which one of the following hyperbolas has straight line asymptotes with equations $y=\frac{x}{2}$ and $y=-\frac{x}{2}-2$?
A. $\frac{(x-2)^{2}}{4}-(y-1)^{2}=1$
B. $\frac{(x-2)^{2}}{8}-\frac{(y-1)^{2}}{2}=1$
C. $\frac{(x-2)^{2}}{12}-\frac{(y-1)^{2}}{3}=1$
D. $\frac{(x+2)^{2}}{8}-\frac{(y+1)^{2}}{2}=1$
E. $\frac{(x+2)^{2}}{3}-\frac{(y+1)^{2}}{12}=1$

Question 3

The roots of $z^{4}+1$ are
A. $z^{2}-i, z^{2}+i$
B. $-1,1,-i, i$
C. $z-1, z+1, z-i, z+i$
D. $\frac{\sqrt{2}}{2}(1+i), \frac{\sqrt{2}}{2}(1-i),-\frac{\sqrt{2}}{2}(1+i),-\frac{\sqrt{2}}{2}(1-i)$
E. $z+\frac{\sqrt{2}}{2}(1+i), z+\frac{\sqrt{2}}{2}(1-i), z-\frac{\sqrt{2}}{2}(1+i), z-\frac{\sqrt{2}}{2}(1-i)$

Question 4

Given $z=\sqrt{2}-3 i$ and $w=3+i \sqrt{2},(z \bar{w})^{-1}$ is equal to
A. $\frac{6 \sqrt{2}+7 i}{121}$
B. $\frac{6 \sqrt{2}-7 i}{121}$
C. $\frac{1}{6 \sqrt{2}+7 i}$
D. $\frac{i}{7}$
E. $\frac{i}{11}$

Question 5

Which one of the following statements is false for $z=-1.82+0.91 i$?
A. $z \in\left\{z: \operatorname{Arg}(z) \geq-\frac{5 \pi}{6}\right\} \cap\{z: 2<|z|<4\}$
B. $\quad z \in\left\{z: \operatorname{Arg}(z) \geq \frac{5 \pi}{6}\right\} \cap\{z: 2<|z|<4\}$
C. $\quad z \in\left\{z: \operatorname{Arg}(z) \geq \frac{5 \pi}{6}\right\} \cup\{z: 3<|z|<5\}$
D. $\quad z \in\left\{z: \operatorname{Arg}(z) \leq \frac{5 \pi}{6}\right\} \cup\{z: 2<|z|<4\}$
E. $\quad z \in\left\{z: \operatorname{Arg}(z) \leq-\frac{5 \pi}{6}\right\} \cup\{z: 3<|z|<5\}$

Question 6

The simplified form of $\frac{\cos x-\sin x}{\cos x+\sin x}$ is
A. $\sec (2 x)-\tan (2 x)$
B. $\sec (2 x)+\tan (2 x)$
C. $\operatorname{cosec}(2 x)-\cot (2 x)$
D. $\operatorname{cosec}(2 x)+\cot (2 x)$
E. $(\sec (2 x)-\tan (2 x))^{-1}$

Question 7

Given $f(x)=3 \sec \left(\frac{x-\pi}{2}\right)+1,0<x \leq \pi$, then
A. $f^{-1}(x)=2 \cos ^{-1}\left(\frac{3}{x-1}\right)+\pi, 0<x \leq \pi$
B. $f^{-1}(x)=3 \cos ^{-1}\left(\frac{2}{x-1}\right)+\pi, 0<x \leq \pi$
C. $f^{-1}(x)=3 \cos ^{-1}\left(\frac{2}{x-1}\right)+\pi, x \geq 4$
D. $f^{-1}(x)=2 \cos ^{-1}\left(\frac{3}{x-1}\right)+\pi, x \geq 4$
E. $f^{-1}(x)=\cos ^{-1}\left(\frac{6}{x-1}+\pi\right), x \geq 4$

Question 8

The graph of $y=\frac{b}{\pi} \cos ^{-1}\left(\frac{2 x-a}{a}\right)$ is shown below,

the value of $\int_{0}^{b} x d y$ is
A. $\frac{a b \pi}{6}$
B. $\frac{3 a b}{2 \pi}$
C. $\frac{a b}{2}$
D. $\frac{a^{2}+b^{2}}{2 \pi}$
E. $\frac{(a+b)^{2}}{2 \pi}$

Question 9

The points on the curve $x^{2}-y^{2}=\frac{3}{4}$ where the gradient is 2 are
A. $\left(-\frac{1}{2},-1\right),\left(\frac{1}{2}, 1\right)$
B. $(-2,-1),(2,1)$
C. $\left(-1, \frac{1}{2}\right),\left(1, \frac{1}{2}\right)$
D. $(-2,1),(2,1)$
E. $\left(-1,-\frac{1}{2}\right),\left(1, \frac{1}{2}\right)$

Question 10

The gradient(s) of the curve $y=\log _{e}|x+1|$ where $y=1$ is/are
A. $-e, e$
B. $-e-1, e-1$
C. $e+1, e-1$
D. $-e^{-1}, e^{-1}$
E. $1-e^{-1}, 1+e^{-1}$

Question 11

If $a<b<-1$, then $\int_{a}^{b} \log _{e}|x| d x$ is equal to
A. $\int_{-b}^{-a} \log _{e}|x| d x$
B. $\int_{b}^{a} \log _{e}|x| d x$
C. $-\int_{-b}^{-a} \log _{e}|x| d x$
D. $\int_{b}^{a} \log _{e}(x) d x$
E. $\int_{-b}^{-a} \log _{e}(-x) d x$

Question 12

The graph of $f:[3,6] \rightarrow R, f(x)=\sqrt{9-(x-3)^{2}}$ is shown below. Length measure is in cm .

The shaded region is rotated about the x-axis to form a solid of revolution. The volume of this solid is given by
A. $18 \mathrm{~cm}^{3}$
B. $36 \mathrm{~cm}^{3}$
C. $18 \pi \mathrm{~cm}^{3}$
D. $36 \pi \mathrm{~cm}^{3}$
E. $\frac{36}{\pi} \mathrm{~cm}^{3}$

Question 13

	1	,	,	-	*	-			,	,	/	
1	1	,	-	-	- -	-			,	,	1	
1	,	,	,	-	-	-			,	,	,	1
1	1	,	,	-	-	-	-			,	1	1
1	1	,	-	-	-	-			,	,	1	1
1	,	,	,	-	- -	-				,	1	1
1	1	,	,	-		-	-	-	,	,	1	
7	1	-2	,	-	-	-				\%	1	1
1	1	,	,	-	- ${ }_{-1}$	-	-			,	1	
1	1	,	,	-	- -	-				,	1	
1	,	,	,	-	- -2-	-				,	,	
1	1	,	,	-	- -					,	,	
	1	,	-		- -					,	1	

The direction field for a certain first order differential equation is shown above. The first order differential equation could be
A. $\frac{d y}{d x}=\frac{k}{x}$, where k is a real constant
B. $\frac{d y}{d x}=k \log _{e} x$, where k is a real constant
C. $\frac{d y}{d x}=e^{k x}$, where k is a real constant
D. $\frac{d y}{d x}=k x^{3}$, where k is a real constant
E. $\frac{d y}{d x}=k x^{2}$, where k is a real constant

Question 14

The definite integral $\int_{0}^{\frac{\pi}{3}} \cot \left(\frac{\pi}{2}-x\right) d x$ can be expressed as
A. $\int_{\frac{1}{2}}^{1} \frac{d x}{x}$
B. $\int_{\frac{1}{2}}^{1}\left(-\frac{1}{x}\right) d x$
C. $\left[-\log _{e}\left|\frac{\pi}{2}-x\right|\right]_{0}^{\frac{\pi}{3}}$
D. $\left[\sec ^{2}\left(\frac{x}{2}\right)\right]_{0}^{\frac{\pi}{3}}$
E. $\left[\operatorname{cosec} 2\left(\frac{\pi}{2}-x\right)\right]_{0}^{\frac{\pi}{3}}$

Question 15

Euler's method, with a step size of 0.2 , is used to solve the differential equation $\frac{d y}{d x}=\frac{1}{\sqrt{1+x^{2}}}$, with initial condition $y=-2$ when $x=1$. When $x=1.4$ the approximate value for y is
A. $-2+\frac{0.2}{\sqrt{2.44}}$
B. $-2+\frac{0.2}{\sqrt{2}}+\frac{0.2}{\sqrt{2.44}}$
C. $-2+\frac{0.2}{\sqrt{2}}+\frac{0.4}{\sqrt{2.44}}$
D. $-2+\frac{0.2}{\sqrt{2.44}}+\frac{0.2}{\sqrt{2.96}}$
E. $-2+\frac{0.2}{\sqrt{2.44}}+\frac{0.4}{\sqrt{2.96}}$

Question 16

The position vector of a particle at time $t \geq 0$ is given by $\boldsymbol{r}(t)=3 \sin (t) \boldsymbol{i}+\sqrt{3} \cos (t) \boldsymbol{j}$, where \boldsymbol{i} points to east and \boldsymbol{j} points to north. At $t=\frac{\pi}{3}$, the particle is moving in the direction
A. SE
B. SW
C. NE
D. NW
E. $\mathrm{N} 30^{\circ} \mathrm{W}$

Question 17

$\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r} are the position vectors of three collinear points P, Q and R respectively. Point Q divides the line segment PR into the ratio 1:4.
\boldsymbol{q} is equal to
A. $\frac{1}{3}(\boldsymbol{p}+4 \boldsymbol{r})$
B. $\frac{1}{4}(\boldsymbol{p}+4 \boldsymbol{r})$
C. $\frac{1}{5}(\boldsymbol{p}+4 \boldsymbol{r})$
D. $\frac{1}{5}(4 \boldsymbol{p}+\boldsymbol{r})$
E. $\frac{1}{4}(4 \boldsymbol{p}+\boldsymbol{r})$

Question 18

A particle of mass $m \mathrm{~kg}$ slides along a rough horizontal surface. The reaction force of the surface on the particle makes an angle θ° with the direction of motion of the particle. Which one of the following statements is true?
A. $\theta=0$
B. $0<\theta<90$
C. $\theta=90$
D. $90<\theta<180$
E. $\theta=180$

Question 19

A body of mass 2 kg moves with velocity $\boldsymbol{v}(t)=\cos (2 t) \boldsymbol{i}-5 \boldsymbol{j} \mathrm{~ms}^{-1}$ at time t (in seconds). The magnitude of the rate of change of its momentum with respect to time (in kgms^{-2}) at $t=\frac{\pi}{4}$ is
A. -4
B. -2
C. 2
D. 4
E. 0

Question 20

A body of mass 5 kg falls vertically from rest. Assuming that air resistance is negligible, the distance fallen by the body in the third second is
A. 24.5 m
B. 44.1 m
C. 19.6 m
D. 34.3 m
E. 78.4 m

Question 21

Vectors $\boldsymbol{a}=3 \boldsymbol{i}+p \boldsymbol{j}, \boldsymbol{b}=2 \boldsymbol{i}-5 \boldsymbol{j}$ and $\boldsymbol{c}=5 \boldsymbol{i}+2 \boldsymbol{j}$ are coplanar. They are linearly dependent when
A. $p=\frac{3}{2}$ only
B. $p=\frac{3}{2}$ or $-\frac{7}{2}$ only
C. $p \in R \backslash\left\{-\frac{15}{2}\right\}$
D. $p \in R \backslash\left\{\frac{6}{5}\right\}$
E. $p \in R \backslash\left\{-\frac{15}{2}, \frac{6}{5}\right\}$

Question 22

A body of mass 5 kg is in equilibrium when it is acted upon by three concurrent coplanar forces $\boldsymbol{P}, \boldsymbol{Q}$ and \boldsymbol{R} as shown in the diagram below. $\boldsymbol{P}=10$ newtons and $\boldsymbol{Q}=20$ newtons. The angle between \boldsymbol{P} and \boldsymbol{Q} is 170° and the angle between \boldsymbol{P} and \boldsymbol{R} is θ°.

The value of θ is closest to
A. 15
B. 20
C. 25
D. 30
E. 35

SECTION 2 Extended-answer questions

Instructions for Section 2

Answer all questions.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this exam are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$.

Question 1

Consider the set of complex numbers $S=\{z:|z|=\arg z\}$. Let $r=|z|$ and $\theta=\arg z$.
a. Complete the following table. 1 mark

θ	0		2		4		6
r		1		3		5	

b. Find the complex number $z=x+y i$ in S such that $\arg z=\frac{\pi}{3}$.
c. Given $w=\frac{\pi}{2} i$, and $0<\arg w<\pi$, determine whether or not $w \in S$. Explain.
d. Plot the graph of the seven complex numbers shown in the table in part a.

e. Each member of $S=\{z:|z|=\arg z\}$ has a complex conjugate.

Find T, the set of complex conjugates of $z \in S$. Specify the values of $\arg z$ for $z \in T$.

Question 2

Two particles P and Q are in motion. Their position vectors at time t, \boldsymbol{p} and \boldsymbol{q}, are given by

$$
\boldsymbol{p}=\left(\log _{e}(t+0.5)\right) \boldsymbol{i}+(t+0.5) \boldsymbol{j} \text { and } \boldsymbol{q}=\left(e^{t-0.5}\right) \boldsymbol{i}+(t-0.5) \boldsymbol{j}, \text { where } 0 \leq t \leq 1 .
$$

a. Find the distance between the two particles at time t.
b. Hence find
i. the closest approach of the two particles and the time that it occurs,
ii. the greatest distance between the two particles and the time it occurs.
c. Find the time when the two particles move in the same direction.
d. Find the cartesian equation, in terms of x and y, of the path of particle P , and the same of particle Q .

2 marks
e. Hence sketch the two paths on the same set of axes (use the same scale for both axes), and explain your answers for t to parts bi and \mathbf{c}.

4 marks
Total 16 marks

Question 3

Consider the function $f:[0,2] \rightarrow R, f(x)=\frac{1}{3}(x-1)^{2}(x+1)^{2}$. Lengths are measured in metres.
a. Find the range of the function.

1 mark
b. Sketch the graph of f showing the coordinates of intercepts, stationary point and end points.

c. Use calculus to find the exact area of the region enclosed by the graph of the function, the y-axis and the line $y=3$.
d. The region described in part \mathbf{c} is rotated about the y-axis. Find the exact volume of the solid of revolution.

5 marks
Total 11 marks

Question 4

Consider $\triangle A B C$ in the following diagram.
$\overline{O M}$ and $\overline{O N}$ are perpendicular bisectors of $\overline{B C}$ and $\overline{A C}$ respectively, and $\overline{O P}$ bisects $\overline{A B}$.

Let $\overrightarrow{O A}=\boldsymbol{a}, \overrightarrow{O B}=\boldsymbol{b}$ and $\overrightarrow{O C}=\boldsymbol{c}$.
a. Express $\overrightarrow{A C}, \overrightarrow{B C}$ and $\overrightarrow{B A}$ in terms of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}.
b. Express $\overrightarrow{O M}, \overrightarrow{O N}$ and $\overrightarrow{O P}$ in terms of $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}.
c. Hence show that
i. $\quad|\boldsymbol{a}|=|\boldsymbol{b}|=|\boldsymbol{c}|$,
ii. $\overline{O P}$ is perpendicular to $\overline{B A}$.
d. Show that $|\overrightarrow{A C}|^{2}+|\overrightarrow{B C}|^{2}+|\overrightarrow{B A}|^{2}=2 d^{2}[3-(\cos \alpha+\cos \beta+\cos \gamma)]$, where $d=|\boldsymbol{a}|=|\boldsymbol{b}|=|\boldsymbol{c}|$ and α, β and γ are angles between \boldsymbol{a} and $\boldsymbol{b}, \boldsymbol{b}$ and \boldsymbol{c}, and \boldsymbol{c} and \boldsymbol{a} respectively.

3 marks
Total 10 marks

Question 5

A 5-kg particle, moving at $10 \mathrm{~ms}^{-1}$, experiences a force of magnitude $\frac{500}{25-t^{2}}$ newtons at time $t \geq 0 \mathrm{~s}$ until it comes to a stop.
a. Show that a differential equation relating v and t is $\frac{d v}{d t}=-\frac{100}{25-t^{2}}$.
b. Show that the velocity of the particle at time t seconds is $10\left(1-\log _{e}\left|\frac{5+t}{5-t}\right|\right) \mathrm{ms}^{-1}$.
c. Find the exact time when the particle comes to a stop.
d. i. Write down a definite integral for the stopping distance.
ii. Hence determine the stopping distance to the nearest metre.

End of Exam 2

