••	•	** **				
		••••				

Online & home tutors Registered business name: mathlinE ABN: 35 631 847 853

Specialist Mathematics

2006

Trial Examination 2

SECTION 1 Multiple-choice questions

Instructions for Section 1

Answer **all** questions. Choose the response that is **correct** for the question. A correct answer scores 1, an incorrect answer scores 0. Marks will **not** be deducted for incorrect answers. **No** marks will be given if more than one answer is completed for any question. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude g ms⁻², where g = 9.8.

Question 1

The graph of $y = \frac{2x^2 + x - 3}{x^2 + 7x - 8}$ has

- A. no straight line asymptotes.
- **B.** only one straight line asymptote.
- C. only two straight line asymptotes.
- **D.** only three straight line asymptotes.
- **E.** x = 1 and x = -8 as its vertical asymptotes.

Question 2

Which one of the following hyperbolas has straight line asymptotes with equations $y = \frac{x}{2}$ and $y = -\frac{x}{2} - 2$?

A.
$$\frac{(x-2)^2}{4} - (y-1)^2 = 1$$

- **B.** $\frac{(x-2)^2}{8} \frac{(y-1)^2}{2} = 1$
- C. $\frac{(x-2)^2}{12} \frac{(y-1)^2}{3} = 1$
- **D.** $\frac{(x+2)^2}{8} \frac{(y+1)^2}{2} = 1$
- E. $\frac{(x+2)^2}{3} \frac{(y+1)^2}{12} = 1$

The roots of $z^4 + 1$ are

- **A.** $z^2 i, z^2 + i$
- **B.** -1, 1, -i, i
- C. z-1, z+1, z-i, z+i
- **D.** $\frac{\sqrt{2}}{2}(1+i), \frac{\sqrt{2}}{2}(1-i), -\frac{\sqrt{2}}{2}(1+i), -\frac{\sqrt{2}}{2}(1-i)$

E.
$$z + \frac{\sqrt{2}}{2}(1+i), \ z + \frac{\sqrt{2}}{2}(1-i), \ z - \frac{\sqrt{2}}{2}(1+i), \ z - \frac{\sqrt{2}}{2}(1-i)$$

Question 4

Given $z = \sqrt{2} - 3i$ and $w = 3 + i\sqrt{2}$, $(z\overline{w})^{-1}$ is equal to

A.
$$\frac{6\sqrt{2} + 7i}{121}$$

B. $\frac{6\sqrt{2} - 7i}{121}$
C. $\frac{1}{6\sqrt{2} + 7i}$
D. $\frac{i}{7}$
E. $\frac{i}{11}$

Question 5

Which one of the following statements is **false** for z = -1.82 + 0.91i?

A.
$$z \in \left\{ z : Arg(z) \ge -\frac{5\pi}{6} \right\} \cap \left\{ z : 2 < |z| < 4 \right\}$$

B. $z \in \left\{ z : Arg(z) \ge \frac{5\pi}{6} \right\} \cap \left\{ z : 2 < |z| < 4 \right\}$
C. $z \in \left\{ z : Arg(z) \ge \frac{5\pi}{6} \right\} \cup \left\{ z : 3 < |z| < 5 \right\}$
D. $z \in \left\{ z : Arg(z) \le \frac{5\pi}{6} \right\} \cup \left\{ z : 2 < |z| < 4 \right\}$
E. $z \in \left\{ z : Arg(z) \le -\frac{5\pi}{6} \right\} \cup \left\{ z : 3 < |z| < 5 \right\}$

The simplified form of $\frac{\cos x - \sin x}{\cos x + \sin x}$ is

- A. $\sec(2x) \tan(2x)$
- **B.** $\sec(2x) + \tan(2x)$
- C. $\cos ec(2x) \cot(2x)$
- **D.** $\cos ec(2x) + \cot(2x)$
- **E.** $(\sec(2x) \tan(2x))^{-1}$

Question 7

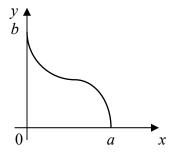
Given
$$f(x) = 3\sec\left(\frac{x-\pi}{2}\right) + 1$$
, $0 < x \le \pi$, then

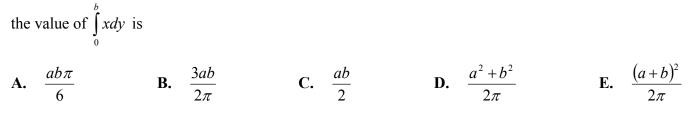
A.
$$f^{-1}(x) = 2\cos^{-1}\left(\frac{3}{x-1}\right) + \pi, \ 0 < x \le \pi$$

B. $f^{-1}(x) = 3\cos^{-1}\left(\frac{2}{x-1}\right) + \pi, \ 0 < x \le \pi$
C. $f^{-1}(x) = 3\cos^{-1}\left(\frac{2}{x-1}\right) + \pi, \ x \ge 4$
D. $f^{-1}(x) = 2\cos^{-1}\left(\frac{3}{x-1}\right) + \pi, \ x \ge 4$
E. $f^{-1}(x) = \cos^{-1}\left(\frac{6}{x-1} + \pi\right), \ x \ge 4$

Question 8

The graph of $y = \frac{b}{\pi} \cos^{-1} \left(\frac{2x - a}{a} \right)$ is shown below,





© Copyright itute.com 2006 Not to be photocopied or reproduced by other means Free download and print from www.itute.com

The points on the curve $x^2 - y^2 = \frac{3}{4}$ where the gradient is 2 are

A.
$$\left(-\frac{1}{2},-1\right), \left(\frac{1}{2},1\right)$$

B. $(-2,-1), (2,1)$
C. $\left(-1,\frac{1}{2}\right), \left(1,\frac{1}{2}\right)$
D. $(-2,1), (2,1)$
E. $\left(-1,-\frac{1}{2}\right), \left(1,\frac{1}{2}\right)$

Question 10

The gradient(s) of the curve $y = \log_e |x+1|$ where y=1 is/are

- A. -e, e
- **B.** -e-1, e-1
- **C.** *e*+1, *e*−1
- **D.** $-e^{-1}, e^{-1}$
- **E.** $1-e^{-1}, 1+e^{-1}$

Question 11

If a < b < -1, then $\int_{a}^{b} \log_{e} |x| dx$ is equal to

A.
$$\int_{-b}^{a} \log_{e} |x| dx$$

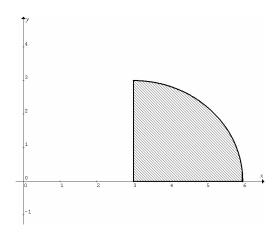
B.
$$\int_{b}^{a} \log_{e} |x| dx$$

C.
$$-\int_{-b}^{-a} \log_{e} |x| dx$$

D.
$$\int_{b}^{a} \log_{e} (x) dx$$

E.
$$\int_{-b}^{-a} \log_{e} (-x) dx$$

The graph of $f:[3,6] \rightarrow R, f(x) = \sqrt{9 - (x - 3)^2}$ is shown below. Length measure is in cm.



The shaded region is rotated about the x-axis to form a solid of revolution. The volume of this solid is given by

A. 18 cm^3 **B.** 36 cm^3 **C.** $18\pi \text{ cm}^3$ **D.** $36\pi \text{ cm}^3$ **E.** $\frac{36}{\pi} \text{ cm}^3$

Question 13

1	1	1	1	-	-	_3 1 ″	-	-	1	1	1	1
1	1	1	-	-	-	ł	-	-	1	/	1	1
/	1	/	/	-	-	2	-	-	/	/	1	1
1	1	1	1	-	-	Ŧ	-	-	1	/	1	1
/	1	1	1	-	-	1	-	-	/	/	1	1
1	1	/	1	-	-	+	-	-	1	/	1	1
/	/	1	1	-	-	0	-	-	1	1	/	/ x
1	/	-2	'	-1	-	-	-	1 1	-	2	/	$\xrightarrow{1 x}{1}$
/ 7 /	/ / /	-21	/ /	-1				1 1 1	, , ,	21	/ / /	$\xrightarrow{1}_{x}$
1	•		1 1 1 1	-1		-		1 1 1	1 1 1 1	,		/ x / / /
1	/	1	/ / / /	-1 -1 1 1		-		1 1 1 1	, , , ,	/	1	/ x / / / /
1	1 1	, , ,		-1 1 1 1		-1		1 1 1 1 1		/	1	/ x / / / / /

The direction field for a certain first order differential equation is shown above. The first order differential equation could be

- A. $\frac{dy}{dx} = \frac{k}{x}$, where k is a real constant
- **B.** $\frac{dy}{dx} = k \log_e x$, where k is a real constant
- C. $\frac{dy}{dx} = e^{kx}$, where k is a real constant
- **D.** $\frac{dy}{dx} = kx^3$, where k is a real constant
- **E.** $\frac{dy}{dx} = kx^2$, where *k* is a real constant

The definite integral $\int_{0}^{\frac{\pi}{3}} \cot\left(\frac{\pi}{2} - x\right) dx$ can be expressed as **A.** $\int_{\frac{1}{2}}^{1} \frac{dx}{x}$ **B.** $\int_{\frac{1}{2}}^{1} \left(-\frac{1}{x}\right) dx$ **C.** $\left[-\log_{e}\left|\frac{\pi}{2} - x\right|\right]_{0}^{\frac{\pi}{3}}$ **D.** $\left[\sec^{2}\left(\frac{x}{2}\right)\right]_{0}^{\frac{\pi}{3}}$ **E.** $\left[\cos ec^{2}\left(\frac{\pi}{2} - x\right)\right]_{0}^{\frac{\pi}{3}}$

Question 15

Euler's method, with a step size of 0.2, is used to solve the differential equation $\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$, with initial condition y = -2 when x = 1. When x = 1.4 the approximate value for y is

A.
$$-2 + \frac{0.2}{\sqrt{2.44}}$$

B. $-2 + \frac{0.2}{\sqrt{2}} + \frac{0.2}{\sqrt{2.44}}$
C. $-2 + \frac{0.2}{\sqrt{2}} + \frac{0.4}{\sqrt{2.44}}$
D. $-2 + \frac{0.2}{\sqrt{2.44}} + \frac{0.2}{\sqrt{2.96}}$
E. $-2 + \frac{0.2}{\sqrt{2.44}} + \frac{0.4}{\sqrt{2.96}}$

Question 16

The position vector of a particle at time $t \ge 0$ is given by $\mathbf{r}(t) = 3\sin(t)\mathbf{i} + \sqrt{3}\cos(t)\mathbf{j}$, where \mathbf{i} points to east and \mathbf{j} points to north. At $t = \frac{\pi}{3}$, the particle is moving in the direction

А.	SE	B. SW	C. NE	D. NW	E. N30°W
----	----	--------------	-------	--------------	-----------------

p, q and r are the position vectors of three collinear points P, Q and R respectively. Point Q divides the line segment PR into the ratio 1 : 4.

q is equal to

A.
$$\frac{1}{3}(p + 4r)$$

B. $\frac{1}{4}(p + 4r)$
C. $\frac{1}{5}(p + 4r)$
D. $\frac{1}{5}(4p + r)$
E. $\frac{1}{4}(4p + r)$

Question 18

A particle of mass *m* kg slides along a rough horizontal surface. The reaction force of the surface on the particle makes an angle θ° with the direction of motion of the particle. Which one of the following statements is true?

- A. $\theta = 0$
- $\mathbf{B.} \quad 0 < \theta < 90$
- C. $\theta = 90$
- **D.** $90 < \theta < 180$
- **E.** $\theta = 180$

Question 19

A body of mass 2 kg moves with velocity $v(t) = \cos(2t)i - 5j$ ms⁻¹ at time *t* (in seconds). The magnitude of the rate of change of its momentum with respect to time (in kgms⁻²) at $t = \frac{\pi}{4}$ is

A4	B2	C. 2	D. 4	E. 0

A body of mass 5 kg falls vertically from rest. Assuming that air resistance is negligible, the distance fallen by the body in the third second is

A. 24.5 m **B.** 44.1 m **C.** 19.6 m **D.** 34.3 m **E.** 78.4 m

Question 21

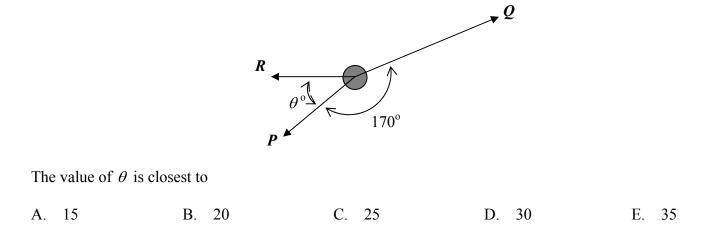
Vectors $\mathbf{a} = 3\mathbf{i} + p\mathbf{j}$, $\mathbf{b} = 2\mathbf{i} - 5\mathbf{j}$ and $\mathbf{c} = 5\mathbf{i} + 2\mathbf{j}$ are coplanar. They are linearly dependent when

- A. $p = \frac{3}{2}$ only
- **B.** $p = \frac{3}{2}$ or $-\frac{7}{2}$ only
- $\mathbf{C.} \quad p \in \mathbb{R} \setminus \left\{-\frac{15}{2}\right\}$
- **D.** $p \in R \setminus \left\{ \frac{6}{5} \right\}$

$$\mathbf{E.} \quad p \in R \setminus \left\{-\frac{15}{2}, \frac{6}{5}\right\}$$

Question 22

A body of mass 5 kg is in equilibrium when it is acted upon by three concurrent coplanar forces P, Q and R as shown in the diagram below. P = 10 newtons and Q = 20 newtons. The angle between P and Q is 170° and the angle between P and R is θ° .



SECTION 2 Extended-answer questions

Instructions for Section 2

Answer all questions.

A decimal approximation will not be accepted if an **exact** answer is required to a question. In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this exam are **not** drawn to scale. Take the **acceleration due to gravity** to have magnitude $g \text{ ms}^{-2}$, where g = 9.8.

Question 1

Consider the set of complex numbers $S = \{z : |z| = \arg z\}$. Let r = |z| and $\theta = \arg z$.

a. Complete the following table.

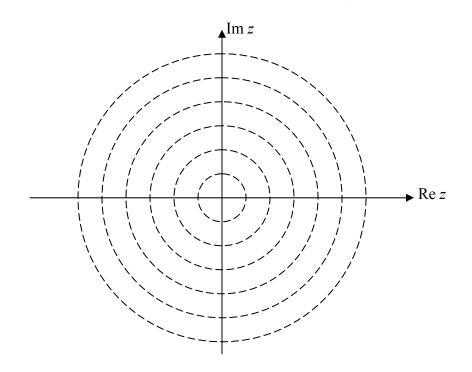
1 mark

θ	0		2		4		6
r		1		3		5	

b. Find the complex number z = x + yi in *S* such that $\arg z = \frac{\pi}{3}$. 2 marks

c. Given $w = \frac{\pi}{2}i$, and $0 < \arg w < \pi$, determine whether or not $w \in S$. Explain. 2 marks

d. Plot the graph of the seven complex numbers shown in the table in part **a**.



e. Each member of $S = \{z : |z| = \arg z\}$ has a complex conjugate. Find *T*, the set of complex conjugates of $z \in S$. Specify the values of $\arg z$ for $z \in T$.

> 3 marks Total 11 marks

Two particles P and Q are in motion. Their position vectors at time t, p and q, are given by

$$p = (\log_e(t+0.5))i + (t+0.5)j$$
 and $q = (e^{t-0.5})i + (t-0.5)j$, where $0 \le t \le 1$.

a. Find the distance between the two particles at time *t*.

b. Hence find
i. the closest approach of the two particles and the time that it occurs, 2 marks

ii. the greatest distance between the two particles and the time it occurs. 2 marks

c. Find the time when the two particles move in the same direction. 3 marks

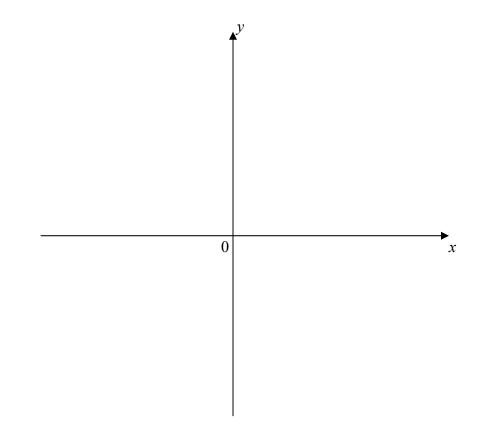
3 marks

d. Find the cartesian equation, in terms of *x* and *y*, of the path of particle P, and the same of particle Q.

2 marks

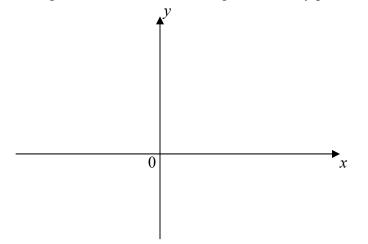
e. Hence sketch the two paths on the same set of axes (use the same scale for both axes), and explain your answers for t to parts **bi** and **c**.

4 marks Total 16 marks



Consider the function $f:[0,2] \rightarrow R$, $f(x) = \frac{1}{3}(x-1)^2(x+1)^2$. Lengths are measured in metres.

- **a.** Find the range of the function.
- **b.** Sketch the graph of *f* showing the coordinates of intercepts, stationary point and end points. 2 marks



c. Use calculus to find the exact area of the region enclosed by the graph of the function, the *y*-axis and the line y = 3.

3 marks

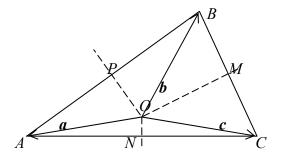
d. The region described in part **c** is rotated about the *y*-axis. Find the exact volume of the solid of revolution.

5 marks Total 11 marks

1 mark

Consider $\triangle ABC$ in the following diagram.

 \overline{OM} and \overline{ON} are perpendicular bisectors of \overline{BC} and \overline{AC} respectively, and \overline{OP} bisects \overline{AB} .



Let $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$ and $\overrightarrow{OC} = c$.

a. Express \overrightarrow{AC} , \overrightarrow{BC} and \overrightarrow{BA} in terms of a, b and c.

b. Express \overrightarrow{OM} , \overrightarrow{ON} and \overrightarrow{OP} in terms of a, b and c.

c. Hence show that i. |a| = |b| = |c|,

ii. \overline{OP} is perpendicular to \overline{BA} .

15

3 marks

1 mark

2 marks

d. Show that $\left|\overrightarrow{AC}\right|^2 + \left|\overrightarrow{BC}\right|^2 + \left|\overrightarrow{BA}\right|^2 = 2d^2[3 - (\cos\alpha + \cos\beta + \cos\gamma)]$, where d = |a| = |b| = |c| and α , β and γ are angles between *a* and *b*, *b* and *c*, and *c* and *a* respectively.

3 marks Total 10 marks

Question 5

A 5-kg particle, moving at 10 ms⁻¹, experiences a force of magnitude $\frac{500}{25-t^2}$ newtons at time $t \ge 0$ s until it comes to a stop.

a. Show that a differential equation relating v and t is $\frac{dv}{dt} = -\frac{100}{25-t^2}$. 1 mark

b. Show that the velocity of the particle at time *t* seconds is $10\left(1 - \log_e \left|\frac{5+t}{5-t}\right|\right)$ ms⁻¹. 4 marks

1 mark

d. i. Write down a definite integral for the stopping distance.

ii. Hence determine the stopping distance to the nearest metre.

2 marks Total 10 marks

End of Exam 2